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The growth of  a crack is considered in the case of asuddenly applied uniformly distributed pressure on the banks. 
This plane problem is a particular case of  the problem concerned  with crack propagation with an arbitrary variable velocity 
[ 1-4], since the law of  motion of  the crack here is not  arbitrary, but is determined from the fracture criterion for dynamics 
[5, 61. 

With the assumption that the specific surface energy is unaltered, in the paper the law of  motion of  a semiinfinite, 
crack developing in a brittle material is calculated. Side by side with the exact solution of the theory of  elasticity, for 
comparison purposes, relations are constructed which describe the same process approximately (for an approximate model 
of  the crack see [3, 4, 7, 8]). Over the extent of  the crack stress oscillograms determined by the theory of elasticity and 
by the approximate model are compared. We note that crack development in the case of antiplane strain is investigated 
in [9]. 

Let the position of  the crack at the time instant t = 0 be specified in the Cartesian system of coordinated as follows: 

--l;- < x < l +, --oo < y < oo, z = 0 (l + > 0) �9 The source of  perturbations is uniform pressure applied suddenly to the 

banks of  the crack at t = 0. The tangential stress is zero. The crack tips for t > 0 are displaced: to the right according to 

the law x = l+(t), to the left according to the law x = -l-(t), with l -+ (0) = I~. At the same time the stresses indicated above 

arise also on the newly formed surfaces of the crack. Because of  symmetry of the load about the plane of  the crack over 
its continuation, tangential stresses and displacements of points along the z axis are absent. The initial conditions of  the 
problem are zero conditions. 

We consider the motion of the right end of  the crack up to the time instant corresponding to the arrival of  perturba- 
tions from the left boundary. In this time interval the solution of the problem for x > / ( t )  (the index + is dropped) coin- 
cides with the solution for a semi-infinite crack on the banks of which there specified a normal and a tangential component 
of  the stress tensor 

~ z  = ~ -  = - - p o l l  [l(t) - -  x l / / ( t ) ,  ( 1 )  

~x~ = 0  ( z = + 0 ) ,  

where H is the Heaviside function, and Po is constant with dimensions. 

We write out the solution of  the problem (1), having made use of  the results of  [3, 8]. Assuming the velocity of  
motion of  the crack tip to be not negative and bounded from above by the velocity of  Rayleigh waves, the normal stress 
azz on the continuation of  the crack after simple transformations can be represented by the following expressions: 

,,+ = A N  (t, x,  + (h) N (t, h) dh H It  - -  
a 

F a ( i - - c l ' ) | /  to i/'=~" _ / t : i  o 
N (t, x, h) ~ Po L~ ~ - - a  (x --  1) D -t- V ~ "  arctg V ~ D - -  

\ U 1 

b b 

CF u d.  I F l ( u ) d .  t 
A = t - ~ J  ~( ) h - - a '  D = I - 4 - .  ~ ,  Ul----x_l-_[_to/b, 

tt 

l = l (to), l" = dl (to)/dt o, t - -  t o = h Ix - -  l (t0)l, 

where a, b, c are quantities reciprocal to the velocities 
on the law of motion and the load, have the form [8] 

of  dilatation, shear, and Rayleigh; the functions Fi, not depending 

Fi = ( - - t )  i+1 ~/(u) exp [(--1)i+1• (u) ] (i ~ t, 2), 

4 u2 ] [ b ~  v~U~ __ a 2 [(b 2 _ 2u2)4 + t 6 u  ~ (b ~ _ u ~) (u  ~ _ a2)1-1/2,  
7 (u) = ~- 
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b 
, s • (u )  = ~-  v . p .  a r c t g  [ 4 a  ~ 1 / a  ~ - -  a ~ t / ~  - -  ~z 2 (b 2 - -  2a2)  - 2 ]  da 

, O $ _ _ ~  ~ 

a 
b 

F3 (h) = "Uu[VU~-ajgu__ h 
h 

The symbol v.p. denotes the principal value according to Cauchy in the case of  integration. 

The func t ion / ( t )  in (2) as yet  is arbitrary, while the development of the crack is connected with the energy used 
at its boundary. Therefore the law of  motion of  the crack has to be determined from the condit ion of conservation of  
energy in the process of  deformation for an elastic body with a developing crack - an analogy of the Griff i ths-Irvine 
criterion for dynamics. I f  we denote by T the density of  energy absorbed at the boundary of  the crack, then from the 
law of  conservation of  energy for a crack of  normal fracture we have the following connection of  T with the dynamic 
intensity coefficient: 

2T (l') = b~l "~ } / 1 - -  a~l "'~ K~/I2FR (/')1, 
(3) 

K , =  
x-~l(t)+o 

b 

K l ( l ' )  p ~  ( / ' ) ,  k ( / ' ) - ~ i - -  r _ F  2(u) l_u. l : ,  
a 

R ( l ' )  = 4 } / t  - -  a=l "~ ~ / t  - -  b21 "2 - -  (2 - -  b=l'~) ~, l = l ( t )  

(p is the shear modulus). 

The graphs of  the function K~( / ' )  are shown in Fig. 1, where the curves 1-3 correspond to the values of  Poisson's 

ratio v = 0.2; 0.25; 0.3. This function coincides with the coefficient of  dynamism K 1 (v) of  [2] (the expressions (2.11), 
(2.12)). 

The relation (3) serves as the equation for determining the velocity of  the crack. The crack is stationary (l -- I~, 

l" = 0) as long as t < t s. To the quanti ty t s corresponds the time when the dynamic coefficient of intensity, growing, 

reaches the value of  the static coefficient of  intensity KI~ for the crack in limit equilibrium 

2 2 KT --~ KI8 = 2ET (0)/(1 - -  v ~) (4) 

(the constant E is Young's modulus). 

~ceET (0) 
t s 

4p~ ( 1 -  ~) D 2" 

The law of  motion of  the crack for t > t s is determined, taking into account (3), (5), from the equation 

t iP)t/t.---- T(P)/T(0), 

] / t  -~-al" [b l * ( l - -c l ' )  k (/')12 ](r) ~--az" ( t - - , ) R ( P )  

Hence we find the time of start of  the motion of  the right boundary of  the crack 

(5) 

(6) 

As the initial condit ion serves the posit ion of the crack tip at the time instant t = t s .  

In the calculations it was assumed that the specific surface energy does not  depend on the velocity of motion of 
the crackT(l  ") =T(0)  = const. As the unit of  measurement of the length and velocity we took l o and the velocity of the 

shear wave. The density of the medium was also equal to unity, tn addition to this, in the sotution the following quantities 
have been specified: 

= 0.3, ET (0)/[p~ (1 - -  ,~) lo] = t.  

The motion of  the crack with such a choice of  the parameters commences at the time instant ts/(b/o) = 1.0286. 

In Fig. 2, curve 1 represents the relation x = / ( t ) .  On the abscissa axis we have marked off the quantity x/lo, while 

on the ordinate axis we have marked off - t / (b /o ) .  The variation of  the velocity of the crack with time in the expression 

(6) is shown by curve 1 in Fig. 3. Curve 1 presented in Fig. 4 gives an idea about the variation with time of  the stress 
"3+ a+ at the point  x = A o. On the abscissa axis we have plot ted the quantity t/(b/o), and the ordinate axis is the dimension- 

less stress a+/po. Up to the time instant t = a(x + lff) the stress at this point, calculated for a semiinfinite crack, coincides 

with the stress radiated onto the continuation by the crack - / ' ( t )  < x < l+(t). Afterwards at the point  under consideration 

there arrive perturbations from the left boundary of  the crack, and the solution must be constructed with reflections of  
waves from the right boundary of  the crack taken into account. 
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We examine what should the pressure Po be for the motion of the right boundary of the crack to commence earlier 

than perturbations arrive from its left boundary. From the condition t < a(l o + l" o) we find, with (5) taken into account, 
the inequality 

Po > (~cp~)/(4aD)d 

where p~ is the limit static pressure for the crack - l  o < x < l o determined from the solution of the static problem and 
from (41 

K L  = :~p~ ( l  + + g ) / 2  = 2ET (0)itl - -  ,~2). 

Since in the calculations we have taken ET(O)/[p2o(l - -  ~2)/+] = a = const ,  we find that in this case 

p~ = ~p~ ( t  -I- I ~ / l + ) / ( 4 a )  > |(~cPs)/(4aD)l ~ 

and, consequently, it must be 

l ~ / l  + > lac2a/(4aO-D~-)] - -  t .  

Increasing still more the value Po (at the expense of lo), we can achieve that the boundary of the crack arrives at 

the point x = 2l o (being considered in the example) earlier than the  perturbations radiated by the left end of the crack. 

In Figs. 2-4 we have depicted also the solutions obtained for v = 0.3 from the approximate model [3] 

(r+ ~ "-~-Lc( t - -a , t ' )  ( z - - l )  arctg], / ~ H x - ~ 0  + , 

t - - t *  ~ a .  [x - -  i(t*) ]. 
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The choice of  values of the parameter  a ,  in the approximate model is discussed in [8]. For  p = 0.3 we have a ,  = a I = 

0.9469 [7] (curve 2), a ,  = a 2 -- 0.8879 [81 (curve 3). 

The law of  motion of  the crack in the calculations as before was found from the condition (3); only instead of K I 
its approximate value was substituted 

* 2 - ~ f ~  ~ - - c r  K1 = ~0 r ~--T V~---WW" l = l (t). 

As a result, the law of  mot ion of  the crack is determined from the equation 

f *  ( l ' )  t / t :  = r ( l ' ) / T  (0) ,  

l * ( r )  V ~ - a ~ r  ~[bz-(l - a ' ) l  ~ �9 _ , ~ E r  (0) 
(i - -  a . v )  W~----,5-n- ~ ' t~ @~ (t - - , ~ )  ~. '  

where t* is the time of  the start of  motion of  the crack. In the example being considered, for a ,  = a, it practically coin- s 
cides with ts, while for a ,  = a 1 it is less: t*/(bl;) = 0.9626. 

Calculations show that the approximation solution for a ,  = a 2 better  than for a ,  -- a 1 approximates the relations 
determined by the theory of elasticity. Comparisons carried out in the investigation allow us to draw the conclusion about 
the applicability of  the approximate model for the calculation of  problems concerned with dynamic fracture. 

When determining the law of  motion of the crack from Eq. (6), it  turned out that the function f(/*) in the interval 
0 <~ b l *  < 0.4 only insignificantly differs from a linear function. In Fig. 5 curves 1-3 show its variation for v = 0.2; 0.25; 
0.3. 

We replace the function on this interval by the approximate expression 

f ( r )  N i - o r ( t ) .  (7 )  

Integrating Eq. (6), where f ( l ' )  is replaced by the function (7), we find the law of  motion of the crack under a 
load uniformly distributed over the banks 

t ( t )  = l + + [ t -  t s - -  t~ I n  ( t / t s ) ] / c .  (8) 

The values of  l and 1" calculated from the expression (8) for u = 0.3 are shown in Figs. 3 and 4 (curces 4). They 
quite well approximate the exact solution at the start of  the fracture process. 
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